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Point defects are ubiquitous in two-dimensional crystals and play a fundamental role in determining their
mechanical and thermodynamical properties. When crystals are formed on a curved background, finite-length
grain boundaries �scars� are generally needed to stabilize the crystal. We provide a continuum elasticity
analysis of defect dynamics in curved crystals. By exploiting the fact that any point defect can be obtained as
an appropriate combination of disclinations, we provide an analytical determination of the elastic spring
constants of dislocations within scars and compare them with existing experimental measurements from optical
microscopy. We further show that vacancies and interstitials, which are stable defects in flat crystals, are
generally unstable in curved geometries. This observation explains why vacancies or interstitials are never
found in equilibrium spherical crystals. We finish with some further implications for experiments and future
theoretical work.
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I. INTRODUCTION

The rich physics of the ordering of matter on planar sur-
faces takes on a new complexion when the ordering occurs
on a curved two-dimensional manifold. Gaussian curvature,
for example, favors the appearance of topological defects
that are energetically prohibitive in planar systems. This has
been demonstrated in the case of sufficiently large spherical
crystals �1–6�, toroidal hexatics �7�, and both crystals and
hexatics draped over a Gaussian bump �8,9�.

For the simplest case of crystalline order on the constant-
curvature two-sphere �the surface of a solid ball in R3� the
key new feature is the appearance of scars �Fig. 1�, linear
strings of dislocations around a central disclination that
freely terminate inside the crystal, for crystals with radius
above a microscopic-potential-dependent critical radius
�1–3�. Scars have been observed experimentally in systems
of colloidal beads self-adsorbed on spherical water droplets
in an oil emulsion �10�. The imaging technique �conventional
microscopy� in these experiments only allowed spherical
caps covering 10%–20% of the full sphere to be imaged.
Recently the use of fluorescently labeled colloidal particles
and laser scanning confocal microscopy allowed the imaging
of 50% of the sphere. In this way the global spatial distribu-
tion of scars was also measured �11�.

Recent experiments �12,13� have investigated the dynam-
ics of defects by directly visualizing colloidal particles ab-
sorbed on spherical oil-water interfaces. It was shown that
dislocation glide within the scars �see Fig. 2� could be de-
scribed very accurately by a harmonic potential binding the
dislocation to the scar and an empirical Peierls potential that
models the underlying crystalline lattice. The spring con-
stants of the harmonic potentials, the elastic stiffness of the
dislocation, were obtained from fits to the experimental re-
sults. In this paper, we show that continuum elasticity theory
�1,2� can be used to provide explicit first-principles predic-
tions for the elastic stiffness.

Defects such as vacancies and interstitials are quite com-
mon in two-dimensional crystals �14�. It has been shown

that, quite generally, the presence of vacancies and intersti-
tials significantly reduces the crystal’s strength as a result of
stress enhancement effects �15�. Jain and Nelson �16� per-
formed an extensive investigation of interstitials and vacan-
cies in two-dimensional planar crystals and identified three
different interstitials and vacancies, depending on their sym-
metry, as the prevalent structures. Subsequent experiments
�17� confirmed the stability of these defects and studied their
dynamics. Very recently, Brownian dynamics simulations
�18� have revealed a complex kinetics with a variety of

FIG. 1. �Color online� A light microscope image, reproduced
from �12�, of a water droplet with an 85 �m diameter and 1.9 �m
mean particle spacing �R /a�22�. Fivefold �+1� disclinations are
colored red, sevenfold �−1� disclinations are colored yellow, and
tightly bound five to seven pairs represent dislocations. The three
dislocations whose dynamics are analyzed in this paper are dis-
played within the blue box.
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modes that allow defects to glide and rotate. Rather interest-
ingly, vacancies and interstitials have not been observed ei-
ther experimentally or in numerical simulations �19� in
spherical crystals. In this paper, we provide a study of the
stability of vacancies and interstitials in curved two-
dimensional crystals. Our analysis uses continuum theory,
and therefore the results are directly applicable to other sys-
tems such as, for example, the analysis of vacancies and their
relation to failure stress, which has recently investigated in
straight carbon nanotubes �20�, which provides another ex-
ample for curved crystals.

The paper is organized as follows: In Sec. II we describe
the dynamics of scar defects and the continuum elasticity
theory of defect interactions. The theoretical results so ob-
tained are compared to the experiment in Sec. III. In Sec. IV
we study the instability of interstitials and vacancies in
curved crystals with the continuum elastic model. The Th-
omson problem java applet used for this analysis is described
in the Appendix.

II. DYNAMICS OF SCAR DEFECTS

A. Empirical description of scar dynamics

The scar dynamics is obtained from light microscopy as
discussed in Ref. �12�. A typical snapshot of a configuration
is shown in Fig. 1 and its evolution as a function of time is

shown in Fig. 2, showing some dislocations within the scar
gliding at different times. In Ref. �12�, it was shown that
these data are well described by a model where each dislo-
cation within the scar is pinned by a harmonic potential with
spring constant ki �here i labels the position of the dislocation
within the scar� as shown in Fig. 3—that is,

Ui
tot =

1

2
kisi

2 − U0 cos�2�si/a� , �1�

where si is the geodesic displacement of the ith dislocation
on the surface of a sphere and the last term is the Peierls
potential �21�, which models the underlying crystalline struc-
ture of the lattice. Values for the experimentally determined
spring constants were determined in Ref. �12�. We now pro-
vide the details leading to an explicit evaluation for the elas-
tic stiffness.

B. Continuum elasticity of scars in curved backgrounds

We first present a discussion of the elasticity of scars.
Point topological defects can be parametrized by disclina-
tions. We therefore introduce a disclination density

Q�x� =
�

3�g�x�
�
i=1

N

qi��x − xi� , �2�

where qi is the disclination charge �qi= +1 for 5’s and −1 for
7’s�. The elastic energy of an arbitrary disclination density
has been discussed extensively �1–3� and is given by

E =
Y

2
� � d2xd2y�g�x��g�y��K�x� − Q�x��	 1

�2	
xy

��K�y� − Q�y�� + NEc, �3�

where K�x� is the Gaussian curvature of the background with
metric g�x�, Y is the two-dimensional Young’s modulus, and
Ec is the disclination core energy. Both Y and Ec depend on
the microscopic particle potential.

The free energy of Eq. �3� for a spherical crystal with the
disclination density of Eq. �2� is then �1–3�

FIG. 2. �Color online� The dynamics of the three dislocations
within the blue box of Fig. 1 taken from Ref. �12�. Motion consists
of local Brownian fluctuation about the equilibrium position to-
gether with larger-scale glide.

FIG. 3. �Color online� Spring model of dislocation binding. The
red dot �D� represents the central disclination, and the blue sticks
�i=1,2 , . . . � represent successive dislocations emanating from the
central disclination. The spring constants k1 ,k2 , . . . represent the
binding of each dislocation to its parent scar.
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E =
�Y

36
R2�

i=1

N

�
i�j

N

qiqj���i,	i;� j,	 j� + NEc, �4�

where

��
� = 1 + �
0

�1−cos 
�/2

dz
ln z

1 − z
�5�

and 
 is the angular geodesic length between points ��i ,	i�
and �� j ,	 j�:

cos 
 = cos �i cos � j + sin �i sin � j cos�	i − 	 j� . �6�

The previous energy is a function of disclinations only. It
is convenient to introduce dislocations explicitly. A disloca-
tion can be regarded as a tightly bound disclination dipole,
leading to a defect density

Q�x� =
�

3�g�x�
�
i=1

N1

qi��x − xi� +
1

�g�x�
�
j=1

N2

b�
j ��
�


j ��x − x j� .

�7�

As discussed elsewhere �1–3� the number of disclinations,
N1, is determined by the Euler characteristic � of the back-
ground N1=6�, thus giving 12 for the sphere. We also note

that the Burgers vector b� is perpendicular to the dipole di-
rection defined by the vector connecting the two disclina-
tions forming the dislocation. The elastic energy, Eq. �4�,
includes now a disclination-dislocation energy EDd and a
dislocation-dislocation energy Edd given by

EDd = Y � � d2xd2y
�

3 �
i=1

N1

qi��x − xi�	 1

�2	
xy

� �
j=1

N2

b�
j ��
�


j ��y − y j�

=
YR2

12 �
i=1

N1

�
j=1

N2

qib�
j ��
�


j ���i,	i;� j,	 j� �8�

and

Edd = Y � � d2xd2y�
i=1

N2

b�
i ��
�


i ��x − xi�	 1

�2	
xy

� �
i�j

N2

b
j ����

j ��y − y j�

=
YR2

4�
�
i=1

N2

�
i�j

N2

�b�
i ��
�


i ��b
j ����

j ����i,	i;� j,	 j� . �9�

In spherical coordinates, we have b�
i ��
�


i =b�
i �	

i −b	
i ��

i .
We assume that both components of the angular Burgers vec-

tor, b�
i and b	

i , are approximately 
b� i 
 /R, where 
b� i
 is taken
to be the lattice spacing a. An explicit expression for the
energy of an arbitrary dislocation distribution interacting
with N1 disclinations is provided by combining Eqs. �8� and
�9�.

Let us consider geodesically straight scars, symmetric
about their midpoint and aligned along the fixed-	 meridian,
as shown in Fig. 4. With this choice Eq. �6� gives 	i=	 j and

cos 
=cos��i−� j�. The Burgers vectors b�	
i are orthogonal to

the disclination dipole 
� ij and symmetry implies that �ib�
i

=0.
Since we shall only consider glide motion for which dis-

locations move in the 	 direction, we may set b�
i =0. The

elastic D-d interaction, Eq. �8�, then reduces to

EDd � �
i=1

N1

�
j=1

N2

EDd�
ij� , �10�

with

EDd�
ij� = −
YR

12
qib

j� sin 
ij ln1 − cos 
ij

2
�

1 + cos 
ij
� . �11�

The dislocation-dislocation interaction, Eq. �9�, becomes

Edd � �
i=1

N2

�
i�j

N2

Edd�
ij� , �12�

where

Edd�
ij� =
Y

4�
bibj�−

ln1 − cos 
ij

2
�

1 + cos 
ij
− 1� . �13�

From now on we confine ourselves to the interaction be-
tween defects in a single scar and ignore the effects of the
neighboring scars. In Fig. 5 we plot EDd �solid line� and Edd
�dotted line� as a function of the angular separation 
, in
units of Ya2. Note that the disclination-dislocation interac-
tion is attractive �for sufficiently short angular distance�
while the dislocation-dislocation interaction is repulsive. The
formation of grain boundary scars may now be understood as
arising from the competition between the attractive binding

FIG. 4. �Color online� Schematic diagram of a single scar
aligned along a geodesic meridian on the two-sphere. The red ar-
rows indicate the associated Burgers vector for each dislocation.
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of a dislocation to an excess disclination �D-d interaction�
and the mutual repulsion between dislocations �d-d interac-
tion�. Figure 6 shows the D-d interaction energy as a func-
tion of angular distance for a variety of system sizes. The
functional dependence of EDd / �Ya2� on R /a given by Eq.
�11� implies that the strength of the short-distance attraction
increases with system size. As a result the strong D-d attrac-
tion for large systems leads to more excess dislocations
within a scar to stabilize geometric frustration. Note that the
crossover from an attractive to a repulsive interaction occurs
at a universal value of the order of 1 rad, consistent with the
predictions of Refs. �1,3�.

The potential energy Es of a single scar can be now ob-
tained directly from the finite sum of pair interactions be-
tween defects:

Es = �
i

EDd�
i� + �
i�j

Edd�
ij� , �14�

where 
i is the angular distance of the ith dislocation from
the center of the scar.

C. Dislocation elastic stiffness

We now compute the elastic stiffness �the spring constant
in Eq. �1�� of dislocations within a scar. For that purpose, we
consider small fluctuations of dislocations. Let us consider
now small fluctuations of dislocations around their equilib-
rium positions in a scar with a fixed central disclination. The
geodesic displacement of the ith dislocations will be denoted
by si. We assume that the ith dislocation glides along the
direction defined by the geodesic that starts at a point �di

and
forms an angle of � /2 with respect to the arc connecting �di
to the other defect location under consideration �the disclina-
tion �D or the jth dislocations �dj

�. The deformed geodesic

arc distances 
̃ will then be


i: D��D,0� di��di
,0� ⇒ 
̃i: D��D,0� di��di

,si/R� ,


ij: di��di
,0� dj��dj

,0� ⇒ 
̃ij: di��di
,si/R� dj��dj

,sj/R� ,

�15�

where �D, �di
, and �dj

are the initial locations of the discli-
nation and the ith and jth dislocations, respectively, and
si ,sj �0. For an arbitrary scar along a meridian, the relation

between 
 and 
̃ is given by

cos 
̃i = cos 
i cos�si/R� ,

cos 
̃ij = cos 
ij cos��si − sj�/R� . �16�

Expanding to second order gives

Ẽs = 
Ẽs
�0,0� + �	 �Ẽs

�si

	
�0,0�

si + 	 �Ẽs

�sj

	
�0,0�

sj�
+

1

2�	 �2Ẽs

�si
2 	

�0,0�
si

2 + 2	 �2Ẽs

�si�sj

	
�0,0�

sisj

+ 	 �2Ẽs

�sj
2 	

�0,0�
sj

2� . �17�

The first derivatives are easily seen to vanish, confirming
that the initial configuration �linear and central symmetric� is
a local minima:

	 �Ẽs

�si

	
�0,0�

= 	 �Ẽs

�sj

	
�0,0�

= 0. �18�

The second derivatives are given by

FIG. 5. �Color online� The disclination-dislocation �D-d� and
dislocation-dislocation �d-d� interaction energies as a function of
defect separation 
. The inset is a blowup of the short-distance
region of the plot.

FIG. 6. �Color online� The disclination-dislocation �D-d� inter-
action energy versus angular separation 
 for a variety of system
sizes.

BOWICK, SHIN, AND TRAVESSET PHYSICAL REVIEW E 75, 021404 �2007�

021404-4



	 �2Ẽs

�si
2 	

�0,0�
= 	 �  �ẼDd

� cos 
̃i

� �2 cos 
̃i

�si
2 �	

�0,0�

+ 	 �  �ẼDd

� cos 
̃ij

� �2 cos 
̃ij

�sij
2 �	

�0,0�

	 �2Ẽs

�sj
2 	

�0,0�
= 	 �  �ẼDd

� cos 
̃ij

� �2 cos 
̃ij

�sj
2 �	

�0,0�

	 �2Ẽs

�si�sj

	
�0,0�

= 	 �  �ẼDd

� cos 
̃ij

� �2 cos 
̃ij

�si�sj
�	

�0,0�

.

�19�

Equation �17� can then be written in terms of effective spring
as

�Es =
1

2�
i

Kisi
2 +

1

2�
i�j

Kij�si − sj�2, �20�

where

Ki =
Ya

12R
�−

1

sin 
i
−

ln1 − cos 
i

2
�

sin 
i�1 + cos 
i�
�cos 
i �21�

and

Kij =
Ya2

4�R2�−
1

sin2 
ij
−

ln1 − cos 
ij

2
�

�1 + cos 
ij�2 �cos 
ij , �22�

with 
i and 
ij determined by the initial configuration to be


i = 
�D − �di

 ,


ij = 
�di
− �dj


 . �23�

We note that the expressions for Ki and Kij show singularities
at 
=0,�. Those singularities are not real, as the validity of
the above expressions is limited to 
� �a /R�. Although ex-
pressions that correctly capture the 
→0 limit may be de-
rived, they are not necessary for the subsequent analysis.

We note that the deformation energy in Eq. �20� contains
nondiagonal terms induced by the dislocation-dislocation in-
teractions. The two stiffness coefficients Ki and Kij result
from D-d attractions �Edd� and d-d repulsions �Edd�, respec-
tively, which implies that Ki�0 and Kij �0 for sufficiently
short angular distance—i.e., �a /R��
�1 rad. Summing up
we may write the energy shift as a general quadratic polyno-
mial.

�Es =
1

2�
ij

Kijsisj , �24�

with Kij given by

Kij =�Ki + �
i�k

Kik if i = j ,

− 2Kij if i � j .
� �25�

For a pinned, small-angle grain boundary in flat space, the
restoring force to shear stress has been obtained in Ref. �22�,
where it results from dislocation-dislocation interactions
alone. The presence of disclination-dislocation interactions is
a special feature of the two-dimensional curvature of the
crystal. The eigenvalues ki of the matrix K,

KV = kiV , �26�

give the effective stiffness coefficients with negative values,
indicating that the associated dislocation will not bind to an
equilibrium scar.

III. COMPARISON TO EXPERIMENT

We now use the formulas developed in the previous sec-
tion to compute the elastic stiffness. The elastic stiffness de-
pends on the particular configuration of dislocations. We
compare our results with the experimental data given in Ref.
�12�. The stiffness coefficients will depend on the detailed
defect spacings in the ground-state configurations as well as
the total number of excess dislocations in a scar. We assume
that dislocations are equally spaced, as actually observed ex-
perimentally �see Fig. 2�, although theoretical calculations
predict that the spacing should grow with distance from the
center of the scar �2,4�. We take the first dislocation be a
distance 2a from the central disclination with the remaining
dislocations spaced a distance 3a apart, as shown in Fig. 7.

For the numerical spring constants, we use the experimen-
tally measured �12� two-dimensional Young’s modulus Y
=167kBT /a2. Note that the units of ki and Y are all kBT /a2.

Spring constants for typical experimental sizes are plotted
in Fig. 8. We see clearly that the elastic stiffness falls quickly
as a function of distance from the central disclination, in
agreement with general experimental results. At a quantita-
tive level, the predicted values for the elastic stiffness, in unit
of kBT /a2, are compared to the experimental quoted results
of Ref. �12� in Table I. The continuum model predicts a very
large value for the stiffness of the dislocation closest to the
central disclination, and indeed, this dislocation appeared im-
mobile in the experiments in Ref. �12�, and no elastic stiff-
ness could be measured. The results for the next dislocations
are in very good agreement, more so given that the experi-
ment only contains a single scar realization, and the theoret-
ical calculations ignore interactions among scars or the cou-
pling of dislocations to the underlying lattice.

FIG. 7. �Color online� Dislocation spacings for a linear symmet-
ric scar as highlighted within the blue box in Fig. 1.
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IV. DYNAMICS OF VACANCIES AND INTERSTITIALS
IN SPHERICAL CRYSTALS

We now analyze the dynamics of interstitials and vacan-
cies. In Ref. �16�, three types of vacancies V2a �crushed va-
cancy�, SV �split vacancy�, and V3 �threefold symmetric va-
cancy� were identified together with three interstitials I3
�threefold symmetric interstitial�, I2 �twofold symmetric in-
terstitial�, and I2d �disjoint twofold symmetric interstital�.
The I3 interstitial and V3 were found to be the most stable.
Subsequent experiments �17� showed that the different inter-
stitials and vacancies exist as stable defects, and their dy-
namics has recently been studied �18�. This situation is in
contrast with spherical crystals where, to our knowledge, no
interstitials or vacancies have been observed.

In order to investigate vacancies and interstitials we con-
sider a system of 972 particles interacting with a Coulomb
potential. In the initial configuration, there are only 12 dis-
clination defects with the symmetry of the icosahedron, as
shown in Fig. 9 �stage 0�; this is an �8,3� icosadeltahedral
configuration. We now force an I2 interstitial by adding a
particle, as shown in Fig. 9 �stage 1�. I2 evolves into I3, the
bound complex of dislocations with zero net Burgers vector
�stage 2�. It is found that the I3 interstitial is unstable and
starts to be ripped apart into three dislocations �stages 3 and
4� and eventually becomes three separate dislocations which
each glide toward a fivefold disclination �stages 5 and 6�.
They quickly form a miniscar �a 5-7-5 grain boundary� at

each of the vertices 5s by joining the nearest disclinations
�stage 7�. Snapshots of the dynamical sequence discussed
above are shown in Fig. 9.

FIG. 8. �Color online� Spring constants ki for each dislocation
di, calculated for the configuration shown in Fig. 7.

TABLE I. Comparison of the numerical spring constants �in
units of KBT /a2�, for individual dislocations, with the experimental
values �12�.

R /a k1 k2 k3 k4 k5

Expt. 22 N /A 1.70 1.30 1.10

Theory 22 12.78 1.86 1.28

26 13.78 1.96 0.75 0.11

32 15.20 2.52 1.00 0.44

50 18.19 3.57 0.98 0.83 0.07

FIG. 9. �Color online� We first consider an initial lattice with
icosahedron symmetry, an �8,3� icosadeltahedral lattice �stage 0�.
The I2 interstitial is generated by adding one extra particle �stage 1�,
which evolves into a I3 interstitial �stage 2�. The curvature-driven
unbinding of dislocations starts—the decay of an interstitial �stages
3 and 4�. Individual dislocation glides towards the nearest isolated
disclination �stages 5 and 6�. Each dislocation binds to a disclina-
tion to form three miniscars �stage 7�. The results are obtained from
the java applet developed in Ref. �23�, according to the procedure
described in the Appendix.
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A similar analysis may be done for vacancies. By sub-
tracting a particle from the initial icosadeltahedral configu-
ration �8,3� in Fig. 10, the lattice develops the structurally
unstable SV vacancy �stage 1�, which subsequently evolves

into V3 �stage 2�. Due to the energetic instability, V3 eventu-
ally forms three scars via curvature driven unbinding �stages
3–7�, similar to the interstitial.

Similar results also follow by considering 972 particles
interacting with a general potential 1 /r �the generalized Th-
omson problem�, thus showing that the instabilities of vacan-
cies and interstitials are a universal feature of two-
dimensional spherical crystals.

The instabilities of vacancies and interstitials are pre-
dicted from the continuum elastic model described in this
paper. To apply Eq. �14� we first need to estimate the angular
distances between defects at each stage. An �8,3� icosadelta-
hedral lattice, with M =972 particles, corresponds to system
size R /a�8.2 �using M � 8�

�3
� R

a
�2�. The relevant angular dis-

tances between defects can then all be calculated by simple
counting together with spherical trigonometry. The results so
obtained are shown in Table II. Taking the orientation of the
Burgers vectors appropriately into account we may then
compute the total interaction energy at each stage using Eq.
�14�. The evolution of the total energy is shown in Fig. 11.
The energy monotonically decreases until the final scarred
state is reached.

V. CONCLUSIONS

In this paper we have studied the dynamics of point de-
fects in two-dimensional spherical crystals. Our results pro-

FIG. 10. �Color online� We first consider an initial lattice with
icosahedron symmetry, an �8,3� icosadeltahedral lattice �stage 0�.
The SV vacancy is generated by subtracting one particle �stage 1�,
which evolves into a S3 vacancy �stage 2�. The curvature driven
unbinding of dislocations starts—the decay of an vacancy �stages 3
and 4�. Individual dislocation glides towards the nearest isolated
disclination �stages 5 and 6�. Each dislocation binds to a disclina-
tion to form three miniscars �stage 7�. The results are obtained from
the java applet developed in Ref. �23�, according to the procedure
described in the Appendix.

TABLE II. Angular distance between defects during the relax-
ation of the interstitial shown in Fig. 9.

Stage 
d1D1 
d1D2 
d1D3 
d1d2 
d1d3

2 0.5954 0.7379 0.6796 0.1222 0.1222

3 0.4402 0.8379 0.7335 0.2116 0.2445

4 0.3231 0.9420 0.8003 0.4224 0.4402

5 0.3231 0.9420 0.8003 0.5594 0.5594

6 0.2116 1.0488 0.8767 0.7379 0.7379

7 0.1222 1.0739 0.9601 0.9420 0.9420

FIG. 11. �Color online� Continuum elastic energy from Eq. �14�
for the configurations in Figs. 9 and 10. The initial configuration is
an I3 interstitial or a V3 vacancy, both of which are unstable to scar
formation. The small difference in elastic energy for both I3 and V3

results from different final configurations �see Figs. 9 and 10�.
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vide explicit predictions for the dislocation elastic stiffness
that compare quite favorably with experimental data. We also
analyzed the dynamics of interstitials and vacancies and
found that the effects of curvature are quite dramatic, as
defects that are stable in flat space become unstable in curved
space.

A number of issues raised in this paper will require further
investigations. The process of generating vacancies and in-
terstitials can be repeated indefinitely. It should be expected
that in this way, we can grow longer scars, whose length
should saturate at some point. What structures follow will be
the subject of further investigations. Although our presenta-
tion has focused on the sphere, the results should apply
equally to other geometries. It is expected that in arbitrary
geometries, vacancies or interstitials should become unstable
to the formation of scars nucleated by existing disclinations.

Detailed experimental verification of our results could be
achieved from experiments of colloids absorbed on oil-water
interface as in Refs. �10,12�. Using holographical optical
tweezers �17� applied to a spherical crystal, it should be pos-
sible to remove one colloid, thus creating a vacancy, which
according to the results in our paper would become unstable
and join existing scars, which could be visualized as de-
scribed in Ref. �12�. More rigorous validations for the pre-
dictions in this paper can be accomplished by a more com-
prehensive analysis of experimental data such as the one
presented in Ref. �12�.

In summary, the results presented in this paper show the
dramatic effects of curvature in two-dimensional crystals. It
is our expectation that this paper will motivate further ex-
perimental and computational work.
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APPENDIX: ANALYSIS OF VACANCIES AND
INTERSTITIALS USING THE JAVA APPLET

The analysis of the stability of vacancies and interstitials
�see Figs. 9 and 10� has been obtained using the java applet
available at Ref. �23�. In order to reproduce the results, we
generate a �8,3� icosadeltahedral tessellation using the con-
struct �m ,n� algorithm with m=8 and n. Now add or remove
a single particle to the lattice at the barycenter of a spherical
triangle whose vertices are three nearest-neighbor five-fold
disclinations by �shift+click� or �Ctrl+click�. The self-
interstitial �or self-vacancy� so formed is then relaxed by a
standard relaxation algorithm. One immediately finds that a
V2 interstitial �or a SV vacancy� is structurally unstable. In a
few time steps it morphs into a complex of dislocations with
zero net Burgers vector—the most common structure ob-
served is a set of three dislocations �I3 or V3� arranged in a
hexagon. Removing a particle �or adding a particle� back
restores the particle number to the original 972 and relaxing
still leaves scars with total energy lower than the starting
configuration with 12 isolated 5’s. This establishes that scars
are definitely low-energy equilibrium states rather than arti-
facts of the relaxation algorithm.
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